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ABSTRACT

Magnetic flux emergence from the solar interior to the atmosphere is believed to be a key process of forma-
tion of solar active regions and driving solar eruptions. Due to the limited capability of observation, the flux
emergence process is commonly studied using numerical simulations. In this paper, we developed a numerical
model to simulate the emergence of a twisted magnetic flux tube from the convection zone to the corona us-
ing the AMR–CESE–MHD code, which is based on the conservation-element solution-element method with
adaptive mesh refinement. The result of our simulation agrees with that of many previous ones with similar
initial conditions but using different numerical codes. In the early stage, the flux tube rises from the convec-
tion zone as driven by the magnetic buoyancy until it reaches close to the photosphere. The emergence is
decelerated there and with piling-up of the magnetic flux, the magnetic buoyancy instability is triggered, which
allows the magnetic field to partially enter into the atmosphere. Meanwhile, two gradually separated polarity
concentration zones appear in the photospheric layer, transporting the magnetic field and energy into the atmo-
sphere through their vortical and shearing motions. Correspondingly, the coronal magnetic field has also been
reshaped to a sigmoid configuration containing a thin current layer, which resembles the typical pre-eruptive
magnetic configuration of an active region. Such a numerical framework of magnetic flux emergence as es-
tablished will be applied in future investigations of how solar eruptions are initiated in flux emergence active
regions.
Keywords: Magnetic fields; Magnetohydrodynamics (MHD); Methods: numerical; Sun: corona; Sun: flares

1. INTRODUCTION

Coronal mass ejections (CMEs), flares and jets are the ma-
jor forms of eruptions in solar activities, and the physical
mechanisms of their trigger and driver are an important re-
search topic in solar physics. Numerous observational stud-
ies have reported that these eruptive activities frequently oc-
cur in solar active regions, and it is generally believed that
the core structure of the pre-eruptive field is in the form of
either a twisted flux tube, i.e., a magnetic flux rope (MFR) or
a strongly sheared magnetic arcade (Green et al. 2011; Pat-
sourakos et al. 2013). The entire pre-eruption configuration
consists of the core field (either an MFR or a sheared arcade)
and an envelope field (overlying field) that confines the core
field, while eruptions occur when some kind of instabilities
destabilize their force balance (Archontis & Hood 2012).

It is currently accepted that solar active regions are formed
by magnetic flux emergence, the process of magnetic fields
generated by solar dynamo entering the solar atmosphere
from the depths of the convection zone, which is also con-
sidered to be one of the key mechanisms in producing so-
lar eruptive activity (van Driel-Gesztelyi & Green 2015;
Chen 2011). Although the emerging magnetic field has
been thought to be sufficient in itself to generate an erup-
tion (Démoulin et al. 2002; Nindos et al. 2003), in many
cases it acts as a trigger for a pre-existing eruptive config-

uration (Feynman & Martin 1995; Williams et al. 2005). In a
stable pre-eruption configuration, the upward magnetic pres-
sure of the internal flux rope is in equilibrium with the down-
ward tension of the envelope field (Archontis & Hood 2012;
Leake et al. 2013). When a new flux emerges in the vicinity
of the pre-existing eruption configuration, their interaction
causes magnetic reconnection that could reduce the tension
of the envelope field and lead to the eruption (Chen & Shi-
bata 2000). There are two possible ways of reconnection
operating in this process, which are tether-cutting (Moore
& Roumeliotis 1992) and breakout reconnection (Antiochos
et al. 1999). In other cases, the pre-eruption configuration
is associated with the ideal instability. Continuous flux emer-
gence may push the magnetic configuration higher, and when
the envelope field decays too fast with height, the MFR will
run into the torus instability and erupt (Kliem & Török 2006).
Flux emergence can also increases the degree of twist of the
MFR, and when a certain value is exceeded, it triggers kink
instability and an eruption (Ulrich Anzer 1967; Török et al.
2004).

Since without a direct observational probe of the dynam-
ics of magnetic flux emergence from below the solar sur-
face (i.e., the photosphere), many efforts have been devoted
to numerical magnetohydrodynamic (MHD) simulations of
the flux emergence. As pioneered by the early work of Shi-
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bata and colleagues (Shibata et al. 1989), a large number of
works of flux emergence simulation (FES) have been carried
out, in particular, for mimicking simulations of a twisted flux
tube emergence into the solar atmosphere (Moreno-insertis
& Emonet 1996; Fan 2001; Magara & Longcope 2001; Ar-
ber et al. 2001; Manchester et al. 2004; Archontis et al.
2004; Murray et al. 2006; Leake & Arber 2006; Toriumi &
Yokoyama 2010; Cheung & Isobe 2014; Syntelis et al. 2017;
Toriumi & Wang 2019; Fan 2021). These simulations have
successfully reproduced some of the observed phenomena,
such as the vortical motion of the emerging polarities on the
photosphere, the sigmoid shaped coronal MFR, and these
comparative results confirm the reliability of MHD simula-
tions.

To simulate a flux tube emerging from the convection zone
into the corona (and to further study how it erupts) requires
the numerical model to incorporate the highly stratified so-
lar plasma including all the different layers from below the
surface, to the photosphere, the chromosphere, the transi-
tion region, and the corona, which have physical behaviors
rather different from each other. Therefore, a major chal-
lenge in self-consistent simulations of magnetic flux emer-
gence to its eruption is to resolve the multiple spatial and
temporal scales in a single model. For example, near the pho-
tosphere, the scale heights (of gas pressure) are only about
one hundred kilometer, and the gas density varies by more
than eight orders of magnitude within a few megameters,
while in the corona the scale height is tens of megameters,
i.e., with nearly three orders of magnitude larger than the
photospheric ones. On the contrary, the time scales of evo-
lutions in the photosphere and below, in which the magnetic
field is controlled mainly by the plasma, are much longer than
that in the corona, in which the plasma is controlled by the
magnetic field. Thus, most of the current 3D FESs chose to
use relatively small computational domains of a few tens of
megameters in three spatial directions and short time dura-
tions of, typically, a few hours. The burden of computational
resources would be too much if one wants to simulate the
long-term (e.g., days) evolution of active region size (e.g.,
hundreds of megameters).

The motivation of this paper is to develop a new numeri-
cal model of magnetic flux emergence by using our AMR–
CESE–MHD code (Jiang et al. 2010), in particular, utiliz-
ing the features of adaptive mesh refinement (AMR, Berger
& Colella 1989). The technique of AMR has been devel-
oped rapidly in computational fluid dynamics and is becom-
ing a standard tool for treating problems with multi-orders
of spatial or temporal scales, which fits well for FES. By
automatically adapting the computational mesh to the solu-
tion of the governing partial differential equations (PDEs),
methods based on AMR can assign more mesh points for
regions demanding high resolution (e.g., high gradient re-
gions) and at the same time, give fewer mesh points to
other less interested regions (low gradient regions), thereby

providing the required spatial resolution while minimizing
memory requirements and CPU time. Although many clas-
sical numerical MHD solvers based on either finite differ-
ence or finite volume methods have been used in previous
FESs, such as ZEUS–3D code (Stone et al. 2008), the modi-
fied Lax-Wendroff method (Magara & Longcope 2001; Tori-
umi & Yokoyama 2010), and the Lagrangian remap scheme
(Lare3d, Arber et al. 2001), few of these FESs have imple-
mented with the AMR. There are only two simulations used
AMR (Cheung & Schüssler 2006; Martı́nez-Sykora et al.
2015), but both these two early simulations only studied the
evolution of the flux tube below the photosphere and in Che-
ung & Schüssler (2006) the simulation is carried out within
2.5D rather than 3D. On the other hand, the CESE method
is distinct from the classical numerical methods of the finite-
difference or finite-volume schemes, as it has a much sim-
plicity in mathematics without Riemann solver or eigen-
decomposition, but can achieve higher accuracy at equivalent
grid points, which is also desirable for the FES. The AMR–
CESE–MHD code has achieved many excellent results in
other simulations, such as in analysis of the fundamental ini-
tiation mechanism of solar eruptions (Jiang et al. 2021b; Bian
et al. 2022), the data-driven active region evolution and erup-
tions (Jiang et al. 2016; Jiang et al. 2021a, 2022), and the
solar wind modellings (Feng et al. 2012).

In this paper, we report our first step of implementation of
applying the AMR–CESE–MHD code to FES, by simulating
the emergence of a twisted flux tube in a simply stratified
solar atmosphere from the convection zone to the corona. In
the following, Section 2 describes the details of the model
and numerical methods. In Section 3, we show the process
and key features of the 3D magnetic flux emergence, which
is overall consistent with previous FESs. In Section 4, we
summarize and give outlooks for future study based on the
new FES model.

2. MODEL

2.1. Initial conditions

The initial settings of our model are similar to that used
in typical simulations of the emergence of twisted flux tube
from below the photosphere to the corona, and particu-
larly the parameters are mostly close to the values used in
Fan (2009). The simulation volume is a Cartesian box of
−14.4 Mm ≤ x ≤ 14.4 Mm, −14.4 Mm ≤ y ≤ 14.4 Mm
and 0 ≤ z ≤ 28.8 Mm where the z axis is the height with
z = 0 denoting the lower boundary, which is a depth of
4.5 Mm below the photosphere.

The initial conditions consist of a plasma in hydrostatic
equilibrium stratified by solar gravity with a characteristic
temperature profile from the top layer of convection zone to
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the corona, which is given by a piece-wise function of height

T (z) =



Tph − γ−1
γ

g0
R (z − zph) : z ≤ zph

Tph : zph < z ≤ zch

Tph

(
Tcor

Tph

) z−zch
zcor−zch : zch < z ≤ zcor

Tcor : z ≥ zcor

,

(1)
where the photospheric temperature is Tph = 5× 103 K and
the coronal temperature Tcor = 106 K. The heights zph =

4.5 Mm, zch = zph + 1.5 Mm, and zcor = zch + 1.5 Mm are
the heights of photosphere, chromosphere, and the base of
the corona, respectively. As the modelling region is a small
range around the solar surface, we assume that the solar grav-
ity is constant with value of g0 = 274 m s−2 on the solar
surface, and R = 8.25 × 103 is the gas constant such that
p = ρRT . By assuming a balance of pressure gradient and
gravity,

dp

dz
= −ρg = − p

RT/g
, (2)

the pressure is

p(z) =



pph

[
T (z)
Tph

]− g0
kcR

, z ≤ zph

pph exp
[
g0(zph−z)
RTph

]
, zph < z ≤ zch

pcor exp
[

zcor−zch
RTph/g0 ln(Tcor/Tph)

(
Tph

T (z) −
Tph

Tcor

)]
,

zch < z ≤ zcor
pcor exp

[
g0(zcor−z)
RTcor

]
, z ≥ zcor

,

(3)
where

pph = pcor exp

[
zcor − zch

RTph/g0 ln(Tcor/Tph)

(
1− Tph

Tcor

)]
exp

[
g0(zch − zph)

RTph

]
.(4)

Then we place a uniformly twisted magnetic flux tube below
the photosphere. It is oriented along the x-direction with a
straight axis located at y = 0 and z = 2.4 Mm (i.e., 2.1 Mm
below the photosphere surface). In the local cylindrical coor-
dinate system centered at the tube axis, its magnetic field is
given by

B = Bx(r)x̂ +Bθ(r)θ̂, (5)

where

Bx(r) = B0 exp(−r2/a2), Bθ(r) = qrBx(r). (6)
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Figure 1. The vertical profiles of plasma pressure, density, and tem-
perature, and the magnetic pressure through the central vertical line
(x, y) = (0, 0).

Figure 2. The simulation domain, with different slices to denote the
distribution of density (x = 0) and temperature (y = 0). The flux
tube is shown by the field lines.

In the above equations, x̂ is the tube axial direction, θ̂ is
azimuthal direction in the tube cross section, and r denotes
the radial distance to the tube axis. For the specific values
of the parameters, we set B0 = 3400 G, and the radius a =

375 km. The twist parameter is set as q = −1/a which is the
threshold value for the kink instability (Linton et al. 1996).
The plasma β (defined as the ratio of the plasma pressure to
the magnetic pressure) is 8.99 at the axis of the tube.

In Figure 1 we show the vertical profiles of plasma pres-
sure, density, temperature, and the magnetic pressure through
the central vertical line (x, y) = (0, 0). Note that all the pa-
rameters in the figures of this paper are divided by their val-
ues in the coronal base (z = zcor).

Since the flux tube is not force-free and to make it in equi-
librium, we modified the plasma pressure (without changing
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the density) in the tube by a difference of

p1(r) =
B2
x(r)

2

[
q2(

a2

2
− r2)− 1

]
, (7)

which ensures that the Lorentz force is balanced by the gas
pressure gradient. Then to make the flux tube buoyant, we
further added a density change ρ1 within the tube

ρ1 = −ρ0(z)
B2
x(r)

2p0(z)

[
(1 + ε) exp(−x2/λ2)− ε

]
, (8)

where ρ0 is the background density, ε = 0.2 and λ =

1.2 Mm. This makes the middle portion of the flux tube
buoyant since the modified density is lower than the back-
ground one (see Figure 2). Note that the buoyancy declines
with horizontal distance from x = 0 following a Gaussian
profile with an e-folding length of λ, and the two ends of the
tube are slightly anti-buoyant. This can let the tube to emer-
gence more vertically when it crosses the photosphere.

2.2. MHD equations

We numerically solve the full set of MHD equations with
the above initial conditions. Before describing the model
equations in the code, it is necessary to specify the quan-
tities used for non-dimensionalization. Different from many
other papers of FES, here we use typical values in the coronal
base (z = zcor) for normalization, since our future applica-
tion of this model will be devoted mainly to investigation of
the eruptions in the corona as driven by the flux emergence.
The specific values for all the variables and parameters are
listed in Table 1:

Variable Expression Value

Density ρs = nm 3.35× 10−15 g cm−3

Temperature Ts 1× 106 K

Length Ls = 16 arcsec 11.52 Mm

Pressure ps = 2nkBTs 2.76× 10−2 Pa

Magnetic field Bs =
√
µ0ps 1.86 G

Velocity vs =
√
ps/ρs 90.9 km s−1

Time ts = Ls/vs 127 s

Gravity gs = vs/ts 1.05 km s−2

Table 1. Parameters used for non-dimensionalization. n is a typical
value of electron number density in the corona given by n = 1 ×
109 cm−3 and m is the mean atomic mass, which is 2 times of
proton mass.

In the rest of the paper all the variables and quantities are
written in non-dimensionalized form if not specified. As
such, the full set of MHD equations are given as

∂ρ

∂t
= −∇ · (ρv),

ρ
Dv

Dt
= −∇p+ J×B + ρg +∇ · (νρ∇v)−B∇ ·B,

∂B

∂t
= ∇× (v ×B) +∇(−µ∇ ·B)− v∇ ·B,

DT

Dt
= (1− γ)T∇ · v − νT (T − T0). (9)

where J = ∇×B is the current density, and γ = 5/3 is the
adiabatic index. Note that we artificially add a source term
−νT (T −T0) to the equation of temperature, where T0 is the
temperature at the initial time t = 0, and νT is a prescribed
coefficient given by

νT =
1

2

[
1− tanh

(
T − Tmin

Tmin

)]
, (10)

where Tmin = Tph/2 = 2.5 × 10−3. This source term is a
Newton relaxation of the temperature to its initial value by a
time of 1/νT , and with the specific choice of νT , it is aimed
to avoid over cooling of the plasma during the fast expansion
of flux tube after it passes through the photosphere into the
corona. As our code has rather small numerical diffusion, we
need some additional kinetic viscosity to dissipate the small-
scale disturbances arisen in the simulation. We use a small
viscosity coefficient ν = 0.1∆xvmax, which is given accord-
ing to the local grid size ∆x and the local largest wave speed
vmax

vmax = v +
√
c2s + v2A, (11)

where v, cs =
√
γp/ρ, and vA = B/

√
ρ are the motion

speed, the sound speed, and the Alfvén speed, respectively.
It corresponds to a grid Reynolds number of

Rg =
∆x2/ν

∆x/vmax
= 10. (12)

In the MHD equation, all the terms associated with ∇ ·
B are employed to eliminate the ∇ · B, or the magnetic
monopole, which should be exactly zero but arises due to
numerical errors. The diffusion coefficient for magnetic
monopole is given by µ = 0.4(∆x)2/∆t according to the
local grid size and time step. Finally, we note that in the
magnetic induction equation no explicit resistivity is used,
but magnetic reconnection is still allowed through numeri-
cal diffusion when a current layer is sufficiently narrow such
that its thickness is close to the grid resolution (see also Jiang
et al. 2021b).

2.3. Numerical scheme and grid setting

The above full set of MHD equation (9) is solved by the
CESE–MHD code (Jiang et al. 2010). The CESE method
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Figure 3. The evolution of the block (which contains 83 cells) dis-
tribution during the simulation. The whole computation domain is
divided into blocks of different sizes, which are shown by the grid
lines. Each block further consists of 83 cells (i.e., 8 in each direc-
tion), which is not shown in the figure because it will be too dense
to show. The color indicates the distribution of the logarithm of the
density ρ on slice x = 0.

treats time as being a dimension similar to the three dimen-
sions in space when solving the 3D time-dependent govern-
ing equations. By reasonably introducing the conservation
element (CE) and the solution element (SE) in the 4D space
of space and time, and using the conservation law to com-
pute the space-time flux to obtain the information of the
next time. Contrast with many other numerical schemes,
the CESE method is simple in mathematics since it does
not need Riemann solver or eigen-decomposition, but can
achieve higher accuracy with the equal number of grid points.
More details of the scheme can be found in Feng et al. (2007,
2006) and Jiang et al. (2010, 2012).

The simulation volume is resolved by an AMR grid of cu-
bic cells. The AMR is designed to automatically and dy-
namically resolve with highest resolution the large gradi-
ent regions in plasma variables arisen during the magnetic
flux emergence as well as the strong magnetic field regions,
mainly in the flux tube. Specifically, the whole volume is di-
vided into blocks of different sizes, and each block consists
of 83 cells, and after each time step of advancing solution, we
checked whether the blocks need to be refined or coarsened
by a set of physics-based criteria, which are defined as

χρ = ∆c
|∇ρ|
ρ

, χp = ∆c
|∇p|
p

,

χB = ∆c
|∇(pB)|
pB

, χT = ∆c
|(B · ∇)B|

pB
, (13)

where pB = B2/2 is the magnetic pressure, and ∆c is the
length of the cell. If any of the four quantities in any cell of
a block is larger than the threshold for refinement, which are

given as 0.25 for both χρ and χp and 0.1 for both χB and χT ,
this block will be refined. On the other hand, if all the four
quantities in all cells of a block are smaller than the thresh-
old of coarsening, which are 0.1 for both χρ and χp and 0.04

for both χB and χT , this block will be coarsened. After the
refinement and coarsening, the variables on the new grid will
be interpolated from the old grid and then the solution will
be advanced in the new time step. Note that the application
of the two criteria χB and χT , which is associated with mag-
netic field B only, is restricted within the strong-field region
satisfying pB/ρ > 1×10−3 and pB/p > 1×10−3 . Figure 3
shows the evolution of the block (which contains 83 cells)
distribution with these criteria applied during the simulation.
We use three levels of AMR with the highest resolution of
45 km and lowest resolution of 180 km. Then we employed
the PARAMESH software package (MacNeice et al. 2000) to
manage the AMR procedure and the paralleling computing.

Since the spatial resolutions and the wave speeds of
blocks within the computational domain vary significantly,
the timesteps computed using a fixed Courant numberC ∼ 1,
∆t = C∆c/w, where w is the maximal wave speed in the
block, will also vary significantly. A simple way is to use
a uniform timestep for all the blocks, which is defined as
∆tg = C∆min/wmax where ∆min is the highest resolution
and wmax is the maximal wave speed in the entire computa-
tion domain. However, this will increase significantly the
numerical diffusion on the coarser blocks and in the low
wave speed areas, especially evident contrasting the wave
speeds (mainly the sound speed) in the photosphere and in
the corona, since the local timestep ∆t is much larger than
the global one ∆tg, or in other words, the local Courant num-
ber defined as Cl = w∆tg/∆c is much smaller than unity.
This problem is especially serious for the CESE scheme
which is sensitive to the local Courant number. To overcome
this problem, we use time marching with block-based vari-
able timestep, in which different timesteps are used for differ-
ent blocks, with the timesteps defined as ∆t = C∆c/wmax

thus directly proportional to the resolutions of the blocks.
Furthermore, we use the Courant number insensitive (CNIS)
approach (Chang 2005) which can reduce the numerical dis-
sipation substantially in the case that the local Courant num-
ber is small.

3. RESULT

3.1. General evolution

The whole process of subsurface twisted magnetic flux
tube emerging in the atmosphere is consistent with previ-
ous simulations (Fan 2001, 2009; Manchester et al. 2004;
Archontis et al. 2004; Magara 2004; Murray et al. 2006;
Leake & Arber 2006; Leake et al. 2013; Syntelis et al. 2017).
The middle section of the flux tube starts to rise upward
from the convection zone due to the magnetic buoyancy as
caused by density deficit, while the two ends of the tube sink
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Figure 4. (a-l) Three perspective views of 3D structure and evolution of the magnetic flux tube during the emergence. (m-p) The iso-surface of
the flux tube with magnetic field strength B = 0.1B0.

slightly because of artificial anti-buoyancy. The middle part
of the tube continues to rise and expand with height until
its apex touches the surface. Then the accumulation of the
magnetic field under the surface triggers the magnetic buoy-
ancy instability, allowing part of the flux to enter the photo-
sphere/chromosphere and expand rapidly in the corona.

Figure 4(a-l) shows three perspective views of 3D struc-
ture and evolution of the magnetic flux tube during the emer-
gence. The black line in these panels, which represents the
axis of the initial flux tube, is obtained by tracing the O-point
(Bθ minimum) on a vertical cross section of the flux tube
at different times. Here the cross section is selected as be-

ing the right x boundary, since at its two ends the flux tube
evolves much more slowly and is more regular than its mid-
dle part that emerges into the atmosphere. The yellow lines
are the field lines through four points evenly distributed on
this cross section with a small radial distance of 0.02Ls from
the O-point. Note that the two ends of the flux tube also ex-
pand and evolve (but very slightly) during the emergence of
its central portion. Therefore, these field lines are not ex-
actly the same set of field lines in the different panels (or
times). Nevertheless, they are a good approximation of the
same set of field lines and can reflect the topology and its
evolution of the magnetic field. The horizontal slice in each
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Figure 5. (a-c) The evolution of the z-component of the magnetic field (Bz , color) and the tangent velocity (arrows) on the surface. (d-f) show
the distribution of the shear angle θ of the emerging magnetic field on the central vertical plane (x = 0). (g-i) The yellow and black lines are
the same as in Fig.4, and the blue and red lines are the coronal MFR at the position of minimal θ on the central vertical plane.

panel represents the solar surface and the color indicates the
z-component of the magnetic field (Bz).

The first column of Figure 4 is the snapshot at t = 10,
when the middle of the flux tube has undergone a bulge into
an Ω-shape, and then at t = 15 (the second column in Fig-
ure 4), the front of the Ω-shaped flux has emerged into the at-
mosphere with a simple arcade configuration, and the central
axis magnetic line (black field line) is in a weakly forward
S-shape. With time goes on, the emerging flux rapidly ex-
pands to the higher corona while the magnetic field structure
becomes more complex, and eventually more fluxes emerge

forming a strongly reverse S-shaped, i.e., a sigmoid shaped
magnetic structure.

Figure 4(m-p) shows the iso-surface of the flux tube with
magnetic field strength B = 0.1B0. At t = 10, the apex of
the flux tube convex part reached the height of the surface.
Then at t = 15, part of the magnetic field has entered the at-
mosphere in a flattened spherical shape, which indicates that
the lateral expansion of the emerging flux is faster than the
vertical expansion. With the emergence of flux, the coro-
nal magnetic field also expands wider and higher, eventually
forming a “mushroom” shape.
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Figure 6. The evolution of magnetic energy (EB , top panel), mag-
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(FBu, bottom panel). The solid black line in top panel indicates to-
tal magnetic energy and the dashed line indicates the injection mag-
netic energy through the surface, which is the sum of shear term
and emergence term of EB . The blue and red lines denote the shear
term and the emergence term, respectively.

3.2. Vortical and shearing motion

The gradual separation of the two photospheric magnetic
polarities as the flux tube emerges can be observed on the
horizontal slice (surface) in Figure 4. Figure 5(a-c) shows the
evolution of the tangent velocity on this slice. These snap-
shots reveal counterclockwise vortical and shearing motion
in each polarity as the flux emerges. It has been suggested
that this vortical motion is caused by the difference in the
degree of twist q between the subsurface flux tube and the
emerged field (Fan 2009; Longcope & Welsch 2000). The
expansion and stretch of the emerged flux in corona causes
its q to decrease rapidly, and the vortical motion of the two
polarities transports the twist of the subsurface flux tube into
the atmosphere until the q-value equilibrates.

During the evolution of the coronal magnetic field, the
combined effect of the vortical motion of the two polarities
and the shearing flow distorts the field lines of the emerging
flux, turning it from an initial S-shape to an reverse S-shape.
The photospheric shearing flow squeezes the bottom of the
coronal magnetic field toward its middle, and it has been sug-
gested that magnetic reconnection occurs directly under the
sheared field to produce a coronal MFR (Fan 2009). Fig-
ure 5(d-f) show the distribution of the shear angle θ (indicat-
ing the angle between the magnetic field and the y− z plane)
of the emerging magnetic field on the central vertical plane
(x = 0). We find that the distorted magnetic field gradu-
ally separates from the magnetic field that remains below the
photosphere, eventually forming a coronal magnetic struc-
ture with a sigmoid shaped inner core of MFR. The newly
formed coronal MFR at t = 26 is shown in Figure 5(g-i)
(blue and red lines).

The shearing motion of the polarities provides an impor-
tant way for the magnetic energy to enter the atmosphere
through the photosphere, along with the direct upward in-
jection of magnetic field. To quantify the different contribu-
tions from these effects, we calculated the total magnetic field
energy above the photospheric surface (z = 0.39) as well
as the Poynting flux through the surface for the shear term
and the vertical injection term (or emergence term), respec-
tively, using the formula as derived in Kusano et al. (2002)
and Démoulin & Berger (2003). As can be seen in Figure 6,
the total magnetic energy above the photosphere increases
first quite fast in time from t = 10 to 15, in agreement with
the fast increase of the unsigned magnetic flux through the
photosphere. After then, the total magnetic energy becomes
slower and eventually saturates near the end of the simula-
tion (the top panel of Figure 6). And the mismatch of the to-
tal magnetic energy and the injection magnetic energy means
that the contribution by the dissipation and reconnection of
magnetic fields is significant at the later phase, accounting
for 22.4 % of the injection magnetic energy. In the mlddle
panel of Figure 6, the early injection of magnetic energy is
contributed mainly by the emergence term, which however
decays quickly after t = 13, and afterwards the shear term
dominates. At the later stage of emergence, i.e., when the
unsigned magnetic flux has nearly saturated, the emergence
term has decreased to a value close to and even below zero
at the end of the simulation. This suggests that a small sub-
merge of the magnetic energy occurs. The shear term also
decays, but with a much slower rate than that of the emer-
gence term. The net contribution of these two terms eventu-
ally stabilizes the total magnetic energy. This is consistent
with the simulation of Magara & Longcope (2003).

3.3. Two step emergence

Our simulation agrees with many previous simulations that
the emergence of flux from the convection zone to the corona
experiences a two-step process, known as a “two-step emer-
gence” mode (Matsumoto et al. 1993; Magara 2001). The
first step is the rise of the flux tube in the convection zone by
magnetic buoyancy. During this period, the rising speed of
the flux tube initially increases and then decelerates as the
flux approaches the surface. The second step is the evo-
lution of the emerging field into the atmosphere. Toriumi
& Yokoyama (2010) tested the effect of the amount of flux
and the initial field strength on the flux emergence in two-
dimensional numerical simulations, dividing the results into
“two-step emergence”, “direct emergence” and “failed emer-
gence”. Direct emergence means that the rise of the flux tube
is not reduced before breaking through the photospheric sur-
face. Failed emergence is that the flux tube eventually frag-
ments in the convection zone and cannot enter into the atmo-
sphere. The work of Murray et al. (2006) shows that the twist
degree q is also a factor affecting the emergence of the flux
tube, with larger values of q favoring for emergence. And
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Toriumi & Yokoyama (2011) point out that the criterion for
failure emergence is q = 0.05 in 2D simulation.

Figure 7 shows the evolution of the height (top panel) and
velocity (bottom panel) of the apex of the flux tube and the
two O-points in the convection zone and corona on the central
vertical plane (x = 0). Here the apex (black line) is defined
to be the highest point where the magnetic field strength B is
greater than 0.1B0. The evolution of the magnetic flux tube
on its middle section is more complicated than that at the
boundary, since there are multiple positions of very small Bθ
generated during emergence, and thus that the center of the
magnetic flux tube on this plane cannot be defined using the
same way as in Figure 4. We consider the location with the
largest Bx in the minimal Bθ positions on this cross section
as the O-point of the flux tube in the convection zone, while
the highest position with the minimal Bθ is considered as the
O-point of the coronal MFR, denoted by the Ocon and Ocor

points, respectively.
The velocity at the apex of the flux tube (black line) in the

bottom panel of Figure 7 undergoes a process of increase,
then decrease, and again increase. The position where the ve-
locity decreases is near the solar surface (z = 0.39), thus our
simulation belongs to the “two-step emergence” as defined
in Toriumi & Yokoyama (2010). The difference in position
between the red and black line in the top panel of Figure 7
can also reflect the first slow rise, flux pileup near the photo-
sphere, and rapid expansion of the upper part of the flux tube
in the corona. Figure 4 (m-p) shows that the emerging mag-
netic field exhibits a significant horizontal expansion, which
is one of the key features of the “two-step emergence”. How-
ever, in the top panel of Figure 7, the “pileup” of the apex of
the flux tube (black line) near the surface is not obvious, and
we consider that it is due to the relatively large q and B0.

In the first step of emergence, the buoyancy of the flux
tube is suppressed near the photosphere due to the convec-
tive stability of the stratification there, which has a much
smaller temperature gradient than that for convection insta-
bility (Cheung et al. 2007). Consequently, more and more
magnetic fluxes with the frozen plasma that rise from below
accumulate near the photosphere, eventually resulting in an
unstable configuration in which the heavy plasma (as sup-
ported by the magnetic pressure gradient) overlays on the
lighter flux tube. Such an unstable configuration is called
magnetic buoyancy instability (Matsumoto et al. 1993). Ar-
chontis et al. (2004) and Hood et al. (2012) have given the
following critical condition for this instability

−Hp
∂

∂z
(logB) > −γ

2
βδ + k2‖

(
1 +

k2z
k2⊥

)
, (14)

where Hp, z, B, γ and β denotes the local pressure scale
height at the photosphere, the height, the magnetic field
strength, the ratio of the specific heats and the ratio of the
plasma pressure to the magnetic pressure, respectively. δ is
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Figure 7. The evolution of the height (top panel) and velocity (bot-
tom panel) of the apex the flux tube and the two O-points in the
convection zone and corona on the central vertical plane (x = 0).
The dash line in the top panel indicates the height of the surface
(z = 0.39), and the dash line in the bottom panel indicates vz = 0.
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Figure 8. The criterion of magnetic buoyancy instability (red line)
for the front of the tube at each moment. The black line describes
the variation of the magnetic field strength of the flux tube with
height, and the blue line is the stratification effect of the atmosphere.

the superadiabatic index, which is −0.4 for a strong stabi-
lization of the atmosphere. k‖, k⊥, kz are the three com-
ponents of the local perturbation wave vector. The left side
of the equation describes the variation of the magnetic field
strength of the flux tube with height, the first term on the
right side indicates the stratification effect of the atmosphere,
and the second term indicates the effect of the perturbation.
This criterion helps us to determine the time of appearance of
the flux tube on the surface, since the magnetic flux can only
emerge across the surface with the criterion satisfied. We cal-
culated the criterion for the front of the tube at each moment
and plotted the result in Figure 8. The equation perturbation
term is not shown in the figure since it is a small quantity, that
has already included in the criterion (red line). We find that
Equation (14) is met at t = 12, indicating that the buoyancy
instability is triggered at around this moment, and indeed the
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Figure 9. The evolution of the magnetic field lines of flux tube. The
transparent horizontal slice represents the solar surface.

magnetic flux first appears above the photosphere between
t = 11 and 12. It is worth noting that the actual height of
the solar surface islifted up by the rising flux tube, thus at
t = 11 the magnetic flux tube exceeds the initial height of
the photosphere but is still suppressed by the stability of the
stratification.

3.4. Partial emergence

Our simulation also agrees with the existing theory that the
magnetic flux tube in the convection zone can only partially
emerge into the atmosphere, and the field lines behave on the
central vertical plane (x = 0) as described in Leake et al.
(2013), i.e., the up-concave part can expand into the corona,
while the down-concave part under the original tube axis re-
mains mostly trapped under the surface. To give more de-
tails, Figure 9 shows the evolution of the field lines traced 17

points within 0.04Ls near the O-point on the cross section at
right x boundary. These points are the O-point and 4 points
uniformly in each direction along the positive and negative
directions of y and z, respectively, from O-point. The black
line in each panel is obtained by tracing the O-point on right
x boundary. The red lines indicate the field lines in the center
part of the tube while the yellow lines indicate the outer field
lines.

Similar to the simulation of Magara (2004), the outer field
lines of the emerging flux tube spread out in a wide fan after
breaking through the surface, and some filed lines even have
a downward trend, such as the yellow field lines at t = 24

(Figure 9(c)). The lateral expansion of the inner field lines
is restrained by the adjacent twisted field lines, which makes
inner field lines tend to expand vertically. With time, the
internal field of flux rises to higher corona to form MFR, and
remains well connected to the convection zone flux tube.

Figure 10. (a-b) Two perspectives of the field lines traced at 20
points uniformly distributed in the height range 0.3Ls to 0.6Ls on
the central vertical line at t = 26. (c) Add the slice y = 0. The
color indicates the density of current (J). (d) The current sheets on
the central vertical plane (x = 0). The cyan line is the streamline of
electric current of the current sheet.
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Figure 11. The evolution of Bx at the Ocon-point.

3.5. Current sheet

Figure 10(a-c) shows the field lines traced at 20 points that
uniformly distributed in the height range 0.3Ls to 0.6Ls on
the central vertical line (x, y) = (0, 0) at t = 26. The green
lines are the field lines above the black line (same as in Fig-
ure 9), which have reverse S-shaped in the corona, with the
middle part concave downward. The red lines indicate the
magnetic field between the surface and the black line, and
the blue lines are the field lines that do not fully emerge. Ar-
chontis et al. (2004) pointed out that the plasma moves along
the magnetic line of motion towards the lower part of the
field line, and the heavy plasma gathered in the lower part
increases the plasma β, pulls the field lines toward the sur-
face (becoming the structure of the red line in the Figure 9)
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Figure 12. The evolution of the current sheet iso-surface J = 8000, and the transparent horizontal slice represents the solar surface.

Figure 13. (a) The distribution of the current sheets on the central
vertical plane (x = 0). (b) The iso-surface of the current sheet
J = 300.

and reduces the magnetic field gradient, which can cause the
convective stability of the stratification to increase. That re-
strains further emergence of the flux tube in the middle region
between the two polarities, resulting in the subsurface field
lines in this region not breaking through the photospheric sur-
face.

Although the further emergence of the flux tube is sup-
pressed, the magnetic field can still enter the atmosphere
through the motion of the coronal MFR footpoints, which
creates the structure of the field lines like the top two of the
blue lines in Figure 10. The blue and red field lines con-
stitute an X-shaped magnetic field structure in the middle of
the two polarity concentration regions, which induces a trans-
verse current sheet. This current sheet is in contact with the
current sheet of the subsurface original magnetic flux tube
to form a ring current sheet (Figure 10(c)), and Figure 10(d)
shows the streamline of electric current (cyan line) of the ring

current sheet. We found that its induced magnetic field is in
the same direction as the original flux tube, i.e., it will reduce
the tendency of the original magnetic field decay.

Figure 11 shows the evolution of Bx with time at O-point
of the convection zone flux tube, whereBx is hardly decreas-
ing after t = 20, which is significantly different from the
rapid decrease in the earlier period. This process implies
that in the absence of a covered coronal field, the axial di-
rect current is enhanced during the flux emergence and no
return current is observed. (for more details on the study of
current sheets in simulations of the covering field see Török
et al. 2014). Figure 12 shows the evolution of the current
sheet iso-surface J = 8000, and the transparent horizontal
slice represents the solar surface. We found that in the sec-
ond step of flux emergence, the evolution of the current sheet
is divided into two stages. The first stage is before t = 20,
when the rapid emergence of partial fluxes causes the subsur-
face current density to decrease. The second stage is when
the current sheet starts to reform and the subsurface current
sheet reforms more rapidly. We believe that the formation
of the subsurface current sheet is due to the suppression of
the heavy plasma in the middle of the two polarity concen-
tration regions, which causes the convection zone magnetic
field to accumulate heavily under the surface. The current
sheet above the surface is due to the X-shaped magnetic field
structure in Figure 10. These two current sheets eventually
form a cavity configuration.

In addition, the red field lines in Figure 10 are pulled by
the shear flow along the polarity reversal line and the heavy
plasma, causing the sides of the coronal magnetic field to
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squeeze toward the middle, and forming a vertical current
sheet, as shown in Figure 13. In the real case, the resistivity
in the corona is extremely low and reconnection is difficult to
occur, which leads to a close reverse magnetic field on both
sides and forms a thinner and thinner current sheet that accu-
mulates more and more energy. Once reconnection occurs, a
rapid eruption might be produced in the same way as shown
in Jiang et al. (2021b) that a continuously sheared bipolar ar-
cade can initiate an eruption by tether-cutting reconnection.

4. SUMMARY

In this paper we have implemented the FES using the
AMR–CESE–MHD code and has achieved consistent results
with many previous FESs of similar configuration but using
different numerical codes. The AMR–CESE–MHD method
has its uniqueness that it is much simpler in algorithm than
traditional numerical MHD solvers but can achieve higher
resolution. Further aided with the AMR, it can handle well
the drastic variations of many orders of magnitudes in both
spatial and time scales in the computational domain that in-
cludes the convection zone and the different layers of the
solar atmosphere. The computational cost is moderate with
around 31 hours on 480 CPUs of 3GHz.

The simulation follows the whole process of the rising into
the corona of a twisted flux tube that is initially placed in the
convection zone. As driven by the magnetic buoyancy, the
center part of the tube rises until it reaches the photospheric
layer. At this position, the reduced gradient of the back-
ground temperature produces a stratification stabilization ef-
fect, which inhibits the further rise of the flux tube and the
magnetic flux starts to pile up near the surface. When the ac-
cumulated magnetic field is sufficient to trigger the magnetic
buoyancy instability, the upper part of the flux tube begins to
emerge into the solar atmosphere and expands rapidly. The
emerged magnetic field also suppresses the emergence of the
following magnetic field, making only a portion of the origi-
nal flux tube emerge.

During the evolution of the emerging magnetic field in the
corona, vortical and shearing motions of the magnetic polar-
ities on the photosphere play an important role in transport-
ing the magnetic energy and non-potentiality into the atmo-
sphere. To store this energy, the coronal magnetic field has
also been reshaped to a sigmoid configuration (containing a
weakly twisted rope) from the simple arcade at the early time
of the emergence. Due to the strong lateral expansion of the
coronal field, the entire 3D profile of the coronal field resem-
bles the shape of a “mushroom”.

In addition, we also analyze the formation of the current
sheet. The shear flow of the photospheric layer squeezes
the sides of the coronal magnetic field toward the middle,

and the reversed magnetic field (as seen on the central cross
section) gets closer and closer, leading to the formation of a
vertical current sheet. We also found that below this verti-
cal current sheet, the horizontal current sheet on the surface
forms a cavity structure with the current sheet in the convec-
tion zone, and the presence of the toroidal current increases
the magnetic field in the convection zone, which may lead to
the re-emergence of the magnetic field (Syntelis et al. 2017).

The present work developed a framework for numerical
experiments of magnetic flux emergence and its role in pro-
ducing solar eruptions, which will be the focus of our fu-
ture works. For example, with an ultra-high accuracy MHD
simulation, Jiang et al. (2021b) established a fundamental
mechanism behind solar eruption initiation: a bipolar field
driven by slow shearing motion on the photosphere can form
an internal current sheet in a quasi-static way, which is fol-
lowed by fast magnetic reconnection (in the current sheet)
that triggers and drives the eruption. However, their model
domain includes only the corona by assuming the lower lay-
ers of atmosphere below the coronal base (i.e., the photo-
sphere and chromosphere) as a line-tied boundary surface,
and the surface driving velocity is also specified in an ad-
hoc way. This inspires us to perform higher resolution FES
to investigate whether the same mechanism can also oper-
ate to produce eruptions during the evolution of the emerg-
ing flux in the corona, with the shearing motion at the pho-
tosphere generated in a more self-consistently way. In an-
other study, Bian et al. (2022) showed that by the continuous
shearing of the same PIL, the fundamental mechanism can
effectively produce homologous CMEs by recurring forma-
tion and disruption of the internal current sheet. Such homol-
ogous eruptions will be also investigated with longer-term
FESs to verify whether a second emergence will occur af-
ter the first emergence of the same flux tube. And the FESs
have other important applications in studying the solar erup-
tions, in particular, to explore what are the key parameters
that can be used to predict eruptions. One of the such ap-
plications has been shown by Pariat et al. (2017) who used
the FESs by Leake et al. (2013) and found that the ratio of
the magnetic helicity of the current-carrying magnetic field
to the total relative helicity can potentially used for eruption
prediction. This merits further studies using our FES model.
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ral Science Foundation of China (NSFC 42174200 and
41731067), the Fundamental Research Funds for the Central
Universities (HIT.OCEF.2021033), and the Shenzhen Sci-
ence and Technology Program (RCJC20210609104422048
and JCYJ20190806142609035). The computational work
was carried out on TianHe-1(A), National Supercomputer
Center in Tianjin, China.
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